PA-300

THREE PHASE POWER ANALYZER

CASE ELEKTRONIK SAN. VE TİC. LTD. ŞTi.

INDEX

PAGE
1 -MEASUREMENT PROPERTY 3
2 -INTRODUCTION 4
3 -FEATURES 4
4 -USING PUSH BUTTONS 4
5 -RESET 4
6 -ADJUSTMENTS 4
7 -RS 485 PC CONNECTION 4
8 -INPUTS \& OUTPUTS 5
9 -WORKING RULES 5
10-TIME \& DATE 5
11-PHASE SEQUENCE, VOLTAGE AND CURRENT INPUT CONTROL 5
12- SCREEN MENUS 6
13- ADJUSTMENT MENU 7
13- POWER FACTOR MEASUREMENT (PF) 7
14- FREQUENCY MEASUREMENT (Hz) 7
15- VOLTAGE MEASUREMENT (V) 8
16- CURRENT MEASUREMENT (A,mA) 8
17- ACTIVE POWER MEASUREMENT (kW,W) 9
18- REACTIVE POWER MEASUREMENT (kVAr,VAr) 10
19- APPARENT POWER MEASUREMENT (kVA,VA) 11
20- METERS 12
21- ALARM AND PROTECTION 12
22- CONNECTION SCHEME 13
23- CURRENT TRANSFORMER RATIO (EX. CT) 13
24- REMOTE CONTROL NETWORK STRUCTURE 14
25-WİRE SYSTEM NETWORK STRUCTURE 15
26-WIRELESS MODEM SYTEM REMOTE CONTROL 15
27-PC MAIN SCREENS 16
28-PC GRAPHICH SCREENS 19
29-PC DATABASE SCREEN 20
30-PC ALARM SCREEN 20

MEASUREMENT PROPERTY	EACH PHASE	$\begin{gathered} 3 \\ \text { PHASE } \end{gathered}$	RANGE ACC.
- RMS VOLTAGE - RMS CURRENT - REAL POWER - REACTIVE POWER - APPARENT POWER - TOTAL REAL POWER - TOTAL REACTIVE INDUCTIVE POWER - TOTAL REACTIVE CAPACITIVE POWER - TOTAL APPARENT POWER - FREQUENCY - POWER FACTOR - AVG. POWER FACTOR (UNBALANCED SYST.) - APPARENT POWER METER - REAL POWER METER - REACTIVE INDUCTIVE POWER METER - REACTIVE CAPACITIVE POWER METER - ODO REAL POWER METER - ODO REACTIVE INDUCTIVE POWER METER - ODO REACTIVE CAPACITIVE POWER METER - ODO TIME COUNTER - HIGH CURRENT ALARM OUT - HIGH VOLTAGE ALARM OUT - LOW VOLTAGE ALARM OUT - PHASE SEQUENCE CONTROL - CURRENT-VOLTAGE INPUT CONTROL - RS- 485 SERIAL OUTPUT - WINDOWS 95\&98 SOFTWARE - REAL TIME CLOCK \& DATE		\checkmark \checkmark L1 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark 7 6 6 6 6	

INTRODUCTION

PA-300, 3-phase analyzer device measures many of electrical values on an electric distribution center that supplyies high voltage - low voltage, high current control outputs . Also available sending data to computer via RS-485 serial output port which gives you chances to save and report of measured values.

FEATURES

- You may see bellow measured values by the $4 * 20$ lighted LCD screen
- Dimention is DIN 43700 144*144*140
- Membran front panel
- Screen light goes off two minutes later if any push-button not thouched (Power-Save feature)

USING PUSH BUTTONS

There are four push-buttons on front side of the device. These are $\mathbf{F}, \mathbf{P}, \boldsymbol{\Delta}, \boldsymbol{\nabla}$.
F :It is for main menu , total powers and meters .
P :Adjustment menu, viewing alarm delay and meters adjustment menus .
(UP) :Changing bottom line of main menu and increasing the values when adjustment.
∇ (DOWN) :Decreasing the values when adjustment and choosing digits when adjusting meters.

ADJUSTMENTS

When F and P buttons pressed ten second together, adjustment menus appears and time digits start flashing. Hour adjustment is performed by using up-down buttons and by using F button to selecting and adjusting the minutes digitis. Same procedure will apply for date, high voltage, low voltage , current transformer ratio, high current and by using P button to choose alarm delay page. In this page voltage and current delay adjustment can be done as above. Passing to meter reset or adjustment page again press P button. Difference in this page is to selecting digits by down buttons. By the using P button to leave adjustment pages. All settings are memorized and not effected by energy break .
Note : When time meter flashing in the meter reset and adjustment page, rather up or down button can reset the odo time meter and odo meters

RESET

-All values will be reset in the adjustment menu when Δ and ∇ buttons pressed durings ten seconds together, except meter page. In this case adjustment menu has to be setup again .
-Odo meters will be reset when Δ and ∇ buttons pressed together in the metter adjustment page

RS 485 TO COMPUTER CONNECTION

Connecting RS 485 cominication port on the back side of device to computer makes available all the measured values are watched on WINDOWS 95\&98 by specially design program . Also saving measured values to use in future and take print are possible . You need the use RS 485-232 transformer with COM serial port of the computers. Power analyzer can sold with RS 232 cominication protocol (Optional) .
PC Settings:

- RS 232 PORT : 19200, n,8,1
-SCREEN : 800X600 PIXEL

INPUTS \& OUTPUTS

Following inputs can be found in the connection box on the back side of the Power Analyzer

L1(R)	: 1.Phase	Max	255 V rms, 100 ms 2000 pea	input empeda	1.4 MOHM
L2(S)	: 2.Phase	Max	255 V rms, 100 ms 2000 peak,	input empedan	1.4 МОНМ
L3(T)	: 3.Phase	Max	255 V rms, 100 ms 2000 peak,	input empedan	1.4 MOHM
$\mathbf{M p}(\mathrm{N})$: Neutral				
CT1	: Number 1 internel curent transformer, Max 5 Amper, isolated				
CT2	: Number 2 internel curent transformer, Max 5 Amper, isolated				
CT3	: Number 3 internel curent transformer, Max 5 Amper, isolated				
N	: Supply voltage Neutral 220 VAC - \% 25 , + \% 10				
L	: Supply vo	ge Ph	ase $\quad \max 20 \mathrm{~mA}, 4 \mathrm{~W}$		

STORAGE TEMPERATURE : -10 to +50 C
RELATIVE HUMIDITY : < \% 95
Following outputs can be found in the connection box on the back side of the Power Analyzer
RS 485 OUT
: Serial output for PC
Voltage protection : Yüksek ve düşük gerilim için role kontak çıkışı,250 VAC 10 A
Current protection : Yüksek akım için role kontak çıkışı,250 VAC 10 A
NOTE : Current protection output works as a compensation control output on the model of PA-300C

WORKING RULES

2-3 second leter device energized screen comes out and it is start to work with the production setups .
Device has to be setup again for new working conditions .
For efficient working of the device, PA 300 has belows :
-Device protected to any noise comes from input by filters and opto isolators.
-If the CPU of the device locked, otomatic reset circuit makes CPU come back in five second .
-Device setups memorized (EEPROM) and saved for ten years .
-Device saves the measured time, date, meter values in every minutes. Therefore if the power goes off last saved values will be found in memory .
TIME \& DATE
You can see time and date information on the fourth line of the first page of the main menu. If the device is energized time and date counter works normaly, otherwise stops with the last time and date information. When the energy comes back easy to calculate how long energy went off . Time adjustment was explained in the adjustment section .

PHASE SEQUENCE,VOLTAGE AND CURRENT INPUT CONTROL

You can see the input controls on the 4 . line of the 1 . page of the main menu .

-If L1,L2,L3 Phase Currents Sequentially receiving,
-If L1,L2,L3 Phase Voltage Sequentially receiving,
-If Current and Voltage Sequentially connected to the right phase .
NOTE : If all the connections are correct (.) appears, otherwise (*) indicates that some or all connections not correct .

SCREEN MENUS

Device has two menus, these are main menu and adjustment menu . You can see these menus below .

MAIN MENU

	V	$\begin{array}{r} \mathbf{m A} \\ \mathbf{A} \end{array}$	$\begin{array}{r} \mathbf{W} \\ \mathbf{k W} \end{array}$	$\begin{array}{r} \text { VAr } \\ \text { kVAr } \end{array}$		VA
L1(R)						
$\rightarrow \mathrm{L} 2$ (S)						
L3(T)						
$\rightarrow \mathrm{PF} \mathrm{L} 1-.97 \mathrm{~L} 2+.950 \mathrm{~L} 3 \mathrm{l}$						
$\begin{aligned} & \rightarrow \text { INPUTS }=* * * * * * * * * * * * \\ & \rightarrow \text { O.95 F R E Q } \end{aligned}$						

You can read 4 differant value from bottom line of the main menu by using Δ button . The condition is this page has to selected .

TOTAL POWERS

METERS

$\mathbf{k V A h}=0000000$	$H=99$
	0000
$k \mathrm{~A}$ Arii $=0000000$	0000
kVArhc $=0000000$	0000

To choosing pages of main menu by F button .

ADJUSTMENT MENU

$$
\begin{aligned}
& \mathbf{k V A h}=0000000><\mathbf{H}=99 \\
& \mathbf{k W h} \quad=\begin{array}{lllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} \\
& \text { kVArhi=0000000 0 0 0 0 } \\
& \text { kVArhc }=000000000000
\end{aligned}
$$

To choosing pages of adjustment menu by \mathbf{P} button .

POWER FACTOR MEASUREMENT (PF)

You can see sequentially power factor of L1,L2,L3 phases on the 4. line of the 1. page of main menu .

Power factor of the L1,L2,L3 phases
On this table (-) indicates capacitive power , (+) indicates inductive power .
Also you can see AVARAGE POWER FACTOR for the unbalanced loads on the 4. line of the 1. page of the main menu .

Avarage power factor

$$
0.95 \text { F R } \mathbf{E} \quad \text { Q. }=50.15 \quad H z
$$

FREQUENCY MEASUREMENT (Hz)
You can see frequency of $L 1$ phase on the 4 . line of the 1 . page of the main menu .

$$
0.95 \quad F \quad R \quad E \quad Q .=5 \quad 0.15 \quad H z
$$

\qquad
Frequency of L1 phase .

VOLTAGE MEASUREMENT (Vrms)

You can find RMS Volt values of three phases on the 1. row of the 1. page of the main menu . Measrued values are between each phase and neuter .

	V		$\begin{gathered} \mathrm{nA} \\ \mathbf{A} \end{gathered}$		kW	W			$\begin{aligned} & \text { VAr } \\ & \text { VAr } \end{aligned}$		$\begin{gathered} \text { VA } \\ \text { kVA } \end{gathered}$		
$\rightarrow \mathbf{L 1}$ (R)	255	50	00	00	9	9		9	9		9	9	9
\longrightarrow L2 (S)	255	5	00	00	9	9		9	9		9		9
\rightarrow L3(T)	255	50	00	00	9	9		9	9		9		9
PF	L 1	97			+				L 3				0

Volt of L3 (T)Phase 1-255 Vrms
Volt of L2 (S) Phase 1-255 Vrms
Volt of L1 (R) Phase 1-255 Vrms

CURRENT MEASUREMENT (A,mArms)

You can find RMS Current values of three phases on the 1 . row of the 1 . page of the main menu . Each measrued current values belong to each phase. If device has internal current transformer of 5 A and (Current Transformer Ratio) CT=5000/5, values on the screen comes out as a $\mathbf{m A}$. NOTE : If external current transformer will be used with the device, must not forget CT adjustment .

	V				VA kVA

ACTIVE POWER MEASUREMENT(kW,W)

You can find active power values of three phases on the 3. row of the 1 . page of the main menu . Each measured kW value belongs to each phase. If device has internal current transformer of 5 A and (Current Transformer Ratio) CT=5000/5, values on the screen comes out as a Watt .
NOTE : If external current transformer will be used with the device, must not forget CT adjustment .

Also as below you can find total consumption of active power of three phase on the 1 . line of the 2. page of the main menu .

$$
\begin{aligned}
& \Sigma \text { I N D. } \quad \text { PWR=9 } 999 \text { kVAr } \\
& \Sigma \text { CAP. } \quad \mathbf{P W R}=9999 \quad k V A r \\
& \Sigma \text { AP P. } \quad \mathbf{P W} R=9999 \mathrm{kVA}
\end{aligned}
$$

Total consumption of active power of three phase
NOTE: If device has internal current transformer of 5 A and (Current Transformer Ratio) $\mathbf{C T}=\mathbf{5 0 0 0} / \mathbf{5}$, values on the screen comes out as a \mathbf{W}, even written unit on the device $\mathbf{k W}$.

REACTIVE POWER MEASUREMENT (kVAr,VAr)

You can find reactive power values of three phases on the 4. row of the 1 . page of the main menu . Each measured k Var value belongs to each phase. If device has internal current transformer of 5 A and (Current Transformer Ratio) CT=5000/5, values on the screen comes out as a Var .
NOTE : If external current transformer will be used with the device, must not forget CT adjustment .

NOTE: To determine the reactive power if capacitive or inductive, sign of power factor of each phase indicates that moment. If the sign is (-) means capacitive reactive power, other wise (+) inductive reactive power. Also as below you can find total consumption of reactive power of three phases on the 2. and 3.line of the 2 . page of the main menu .

Total consumption of capacitive reactive power of three phase
Total consumption of inductive reactive power of three phase
NOTE: If device has internal current transformer of 5 A and (Current Transformer Ratio) $\mathbf{C T}=5000 / 5$, values on the screen comes out as a VAr, even written unit on the device kVAr .

APPARENT POWER MEASUREMENT (kVA,VA)

You can find apparent power values of three phases on the 5 . row of the 1 . page of the main menu . Each measured kVA value belongs to each phase. If device has internal current transformer of 5 A and (Current Transformer Ratio) CT=5000/5, values on the screen comes out as a VA .
NOTE : If external current transformer will be used with the device, must not forget CT adjustment .

Also as below you can find total consumption of apparent power of three phases on the 4.line of the 2. page of the main menu .

NOTE: If device has internal current transformer of 5 A and (Current Transformer Ratio) $C T=5000 / 5$, values on the screen comes out as a VA, even written unit on the device kVA.

METERS

There are 99 hours countable two digit time odo counter, four digit odo meters and seven digit meters in the 3. page of the main menu. When the device powered all counters and meters starts to work. To meet with right results all counters and meters must be reset as explained before in the adjustment menu .

NOTE: If device has internal current transformer of 5 A and (Current Transformer Ratio)
$\mathbf{C T}=5000 / 5$, values on the screen comes out as a VAh, Wh, VArhi and VArhc, even written unit on the device $k V A h, k W h, k V A r h i$ and $k V A r h c$.

ALARM AND PROTECTION

Device can use as a high voltage, low voltage, high current protection relay. If one ofe the phase exceed the setup limits, alarm output relay starts to be active with the setup delay time. When the phase conditions turns normal , alarm output relay goes inactive position. Same time alarm conditions appears on the screen .

REAR PANEL
CONNECTION BOX
CURRENT TRANSFORMERS RATIO (EX. CT)

1	L1 (R) PHASE INPUT		5/5
2	L2 (S) PHASE INPUT		20/5
3	L3 (T) PHASE INPUT		30/5
4	Mp (N) NEUTRAL		50/5
6	I1 CURRENT IN		60/5
5	I1 CURRENT OUT		75/5
7	I2 CURRENT IN		80/5
8	I2 CURRENT OUT		100/5
9	I3 CURRENT IN		150/5
10	I3 CURRENT OUT		200/5
11	N SUPPLY NEUTRAL		250/5
12	L SUPPLY PHASE		300/5
13	NO	COMPENSATION CONT.	400/5
14	COM. 220 V, 10 A	HIGH CURRENT	500/5
15	NC	PROTECTION	600/5
16	NO		800/5
17	COM. $220 \mathrm{~V}, 10 \mathrm{~A}$	HIGH-LOW VOLTAGE	1000/5
18	NC	PROTECTION	1500/5
19	\square RS - 485		2000/5
20	\rightarrow OUT		2500/5
			3000/5
			4000/5
			5000/5

CONNECTION SCHEME

REMOTE CONTROL NETWORK STRUCTURE

FACTORY OR ENERGY DISTRIBUTION SYSTEM

REMOTE CONTROL CENTER 1

WIRELESS MODEM SYSTEM REMOTE CONTROL

SERIAL I/O : 19200 or 9600 , $\mathrm{n}, 8,1 \quad 1-30 \mathrm{Km}$. (VARIOUS RF OUTPUT POWER)

PC MAIN SCREENS

MAIN

	V	A	kW	kVAr	kVA	PF
L1(R)	6	175	0,9	0,6	1,1	+0.85
L2(S)	5	175	0,7	0,5	0,9	+0.84
L3(T)	5	175	0,7	0,5	0,9	+0.81

[^0]MAIN : In this part , voltage , current , active power, reactive power , apparent power , power factor can be observed for momentary measurement by three phase base .
TOTAL POWERS : In this part reactive power restriction can be observed for momentary as a alarm , beside, total active, reactive and apparent power . Ratios are $\mathbf{k V A r}(\mathrm{ind})=.1 / 3$ * $\mathbf{k W}$ and kVAr(cap.) $=\mathbf{1 / 5} \mathbf{~ *} \mathbf{k W}$. Also FREQUENCY and AVARAGE PF can be measured .
Aalarms are seen in very detail like which numbered Power Analyzer send what kind of alarm . If AUTO WR options is selected than by the alarm comes out, which unit, what kind of alarm , time, date will be written to database automaticly. AUTO options helps immediately to connect to units which gives alarm and makes avilable to search in detail. CLEAR button resets the alarm informations.
PROTECTION \& CONTROL :In this section alarm restrictions, states, relay delay timing for alarms can be observed .
VOLTAGE VAR and LOAD OFF show sensor state to be connected to the unit and current protection relay state.
SEC/MIN shows graphes in minutes base .
VT RATIO lets you to insert voltage transformer ratio therefore high voltage measurement will be available. All measurement units change by the voltage transformer ratio .
COMM shows which communication ports of PC is being used .
TX ID shows units address that has to be written specific area .
TX CONT shows what kind of control command to be send Power Analyzer. Needed control
command number has to written specific area. These control commands are as below :
4 = Current relay output off
5 = Current relay output on
6 =Sensor automatic control (If sensor input is on than current relay output on, if sensor input is off than current relay output off)
7 =Manual current relay output control
$130=4$ digit odo meters reset on Power Analyzer
$131=7$ digit meters reset on Power Analyzer
132 = Clock reset on power analyzer
RX ID shows address information send by the unit that asures screen information belongs to which unit.
RX CONT shows control command which is sent to unit by PC .
RX ID and RX CONT are must be same with TX ID and TX CONT .If not, communication has problem.
WR. DATA option helps all the data being written to database. If this option is selected than recording will be performed in certain period according to the SCAN \& WR. TIME
If SCAN ID options selected than more than one unit will be scaned .
SCAN AND ID shows last unit to be scaned. First unit is showed by the TX ID .
SCAN \& WR. TIME shows scan and write time sequences .
TOTAL METERS :This section is for power meters .There are three type meters .
1- 4 digid ODO meters. These meters shows consumed energy for certain time . Time can be described for $\mathbf{9 9}$ hours. These meters can be reset from unit or from PC
2- 7 digid meters. These meters count consumed energy from at the begining. These meters can be reset from unit or from PC
3- Meter nemed COUNTER counts the pulse which comes from other devices. This device could be water meter, gass meter etc.
4- kVArih / kWh ratio can be observed momentary on the model of PA-300C. COPM. CONT. Section shows compensation control value .
5- CAPACITOR OFF helps the understand if capacitor on or off .
Also alarm can be observed for reactive power restriction and rate of reactive to active. If reactive iductive ($k V A r h i$) power less than $1 / 3$ active power then state shows no alarm otherwise shows alarm . Therefore we can see if any fine has to be paid .

PC GRAPHIC SCREENS

PC DATABASE SCREEN

-. DATA BASE										- \square \|x
$\begin{array}{llllll}1 & 47 & 5 & 1\end{array}$	2001	ADDRESS					1	COUNTER		1
V	A	kW	kVAr		kVA	PF		APPARENT	(kVAh)	672
L1(R) 29	755	22	3		22	-0,99		REAL	(kWh)=	640
L2(S) 29	748	21	3		22	-0,99		INDUCTIVE	(kVArh)=	160
L3(T) 29	749	21	3		22		-0,99	CAPACITIVE (kVArh)=		27
VTRATIO =	1		AVARAGE PF =			-0,98		REAC. CAP. $\%=$		4
CTRATIO =	5000							REAC. IND.	\% =	25
TOTAL $k W=$	65							ODO HOUR	$=$	0
TOTAL kVAr(ind)=	0							REAL	(kWh)=	14
TOTAL kVAr(cap)=	9		14		ATA	-	-	INDUCTIVE	(kVArh)=	3
TOTAL kVA=	65							CAPACITTV	(kVArh)=	1

PC ALARM SCREEN

M. ALARH

\square
ALARMI STATUS

6

| \| | DATA | \| |
| :--- | :--- | :--- | :--- |

ALARMITYPE

HEGH CURTRENT

1 : 59
27 ; 1 : 2000

[^0]: Power Analyzer PC program has 4 parts . These are Main, Total Powers, Protection \&Control, Total Meters

